Pairwise interactions between two nucleotides

The latest release, DSSR v2.7.2-2026jan12, introduces the --pair-wise (or --pairwise) option, which combines the functionalities of the previous --pair-only and --non-pair options. Base-pair identification is a cornerstone of nucleic acid structural analysis, while non-pairing interactions like H-bonds and stacking are also vital structural features. However, the DSSR --non-pair feature is underutilized within the user community. By consolidating these into a single --pair-wise option, we streamline the process of identifying common interactions between nucleotides.

DSSR offers a wide range of nucleic acid structural features, but for users focusing on fundamental DNA/RNA analysis and annotation, the --pair-only option provides simplified functionality. This option instructs DSSR to generate only base-pairing information, which is essential for structural studies. When enabled, --pair-only significantly enhances performance, allowing DSSR to run approximately 10 times faster than in its default configuration. Running DSSR on the yeast phenylalanine tRNA (PDB 1ehz) with the --pair-only option leads to the following output instantaneously:

# x3dna-dssr -i=1ehz.pdb --pair-only
List of 34 base pairs
     nt1            nt2            bp  name        Saenger   LW   DSSR
   1 A.G1           A.C72          G-C WC          19-XIX    cWW  cW-W
   2 A.C2           A.G71          C-G WC          19-XIX    cWW  cW-W
   3 A.G3           A.C70          G-C WC          19-XIX    cWW  cW-W
   4 A.G4           A.U69          G-U Wobble      28-XXVIII cWW  cW-W
   5 A.A5           A.U68          A-U WC          20-XX     cWW  cW-W
   6 A.U6           A.A67          U-A WC          20-XX     cWW  cW-W
   7 A.U7           A.A66          U-A WC          20-XX     cWW  cW-W
   8 A.U8           A.A14          U-A rHoogsteen  24-XXIV   tWH  tW-M
   9 A.U8           A.A21          U+A --          --        tSW  tm+W
  10 A.A9           A.A23          A+A --          02-II     tHH  tM+M
  11 A.2MG10        A.C25          g-C WC          19-XIX    cWW  cW-W
  12 A.2MG10        A.G45          g+G --          --        cHS  cM+m
  13 A.C11          A.G24          C-G WC          19-XIX    cWW  cW-W
  14 A.U12          A.A23          U-A WC          20-XX     cWW  cW-W
  15 A.C13          A.G22          C-G WC          19-XIX    cWW  cW-W
  16 A.G15          A.C48          G+C rWC         22-XXII   tWW  tW+W
  17 A.H2U16        A.U59          u+U --          --        tSW  tm+W
  18 A.G18          A.PSU55        G+P --          --        tWS  tW+m
  19 A.G19          A.C56          G-C WC          19-XIX    cWW  cW-W
  20 A.G22          A.7MG46        G-g --          07-VII    tHW  tM-W
  21 A.M2G26        A.A44          g-A Imino       08-VIII   cWW  cW-W
  22 A.C27          A.G43          C-G WC          19-XIX    cWW  cW-W
  23 A.C28          A.G42          C-G WC          19-XIX    cWW  cW-W
  24 A.A29          A.U41          A-U WC          20-XX     cWW  cW-W
  25 A.G30          A.5MC40        G-c WC          19-XIX    cWW  cW-W
  26 A.A31          A.PSU39        A-P --          --        cWW  cW-W
  27 A.OMC32        A.A38          c-A --          --        c.W  c.-W
  28 A.U33          A.A36          U-A --          --        tSH  tm-M
  29 A.5MC49        A.G65          c-G WC          19-XIX    cWW  cW-W
  30 A.U50          A.A64          U-A WC          20-XX     cWW  cW-W
  31 A.G51          A.C63          G-C WC          19-XIX    cWW  cW-W
  32 A.U52          A.A62          U-A WC          20-XX     cWW  cW-W
  33 A.G53          A.C61          G-C WC          19-XIX    cWW  cW-W
  34 A.5MU54        A.1MA58        t-a rHoogsteen  24-XXIV   tWH  tW-M

With the --non-pair option, DSSR identifies H-bonding and base-stacking interactions between two nucleotides that do not form a pair. This option is an additional feature integrated into DSSR, expanding its capabilities by including these non-pairing interactions in the main output alongside pairing information, among other functionalities. Running DSSR on the yeast phenylalanine tRNA (PDB 1ehz) with the --non-pair option identifies 91 non-pairing interactions, with the first 16 listed below.

# x3dna-dssr -i=1ehz.pdb
List of 91 non-pairing interactions
   1 A.G1     A.C2     stacking: 5.4(2.6)--pm(>>,forward) interBase-angle=5 connected min-baseDist=3.26
   2 A.G1     A.A73    stacking: 2.4(1.2)--mm(<>,outward) interBase-angle=3 min-baseDist=3.17
   3 A.C2     A.G3     stacking: 0.5(0.0)--pm(>>,forward) interBase-angle=9 connected min-baseDist=3.41
   4 A.G3     A.G4     stacking: 3.2(1.8)--pm(>>,forward) interBase-angle=10 H-bonds[1]: "O2'(hydroxyl)-O4'[3.11]" connected min-baseDist=3.24
   5 A.G3     A.G71    stacking: 2.6(0.3)--mm(<>,outward) interBase-angle=5 min-baseDist=3.02
   6 A.G4     A.A5     stacking: 5.6(3.5)--pm(>>,forward) interBase-angle=6 connected min-baseDist=3.13
   7 A.A5     A.U6     stacking: 5.9(4.3)--pm(>>,forward) interBase-angle=9 connected min-baseDist=3.12
   8 A.U6     A.U7     stacking: 0.6(0.0)--pm(>>,forward) interBase-angle=20 connected min-baseDist=3.11
   9 A.U7     A.5MC49  stacking: 1.2(0.0)--pm(>>,forward) interBase-angle=7 H-bonds[1]: "O2'(hydroxyl)-OP2[2.68]" min-baseDist=3.64
  10 A.U8     A.C13    stacking: 2.0(0.0)--pp(><,inward) interBase-angle=13 min-baseDist=3.34
  11 A.U8     A.G15    stacking: 0.5(0.0)--mm(<>,outward) interBase-angle=14 min-baseDist=3.27
  12 A.A9     A.C11    interBase-angle=27 H-bonds[1]: "O2'(hydroxyl)-N4(amino)[2.90]" min-baseDist=3.72
  13 A.A9     A.C13    interBase-angle=9 H-bonds[1]: "OP2-N4(amino)[3.01]" min-baseDist=4.65
  14 A.A9     A.G22    stacking: 0.1(0.0)--mp(<<,backward) interBase-angle=13 min-baseDist=3.37
  15 A.A9     A.G45    stacking: 1.6(0.5)--pp(><,inward) interBase-angle=10 min-baseDist=3.30
  16 A.A9     A.7MG46  stacking: 1.6(0.7)--mm(<>,outward) interBase-angle=4 H-bonds[1]: "O5'-N2(amino)[3.34]" min-baseDist=3.38
......

DSSR calculates base-stacking by determining the overlap area (in Ų) between two interacting bases. The calculation involves projecting the atoms of the two bases onto their mean plane to define the overlapping region, from which the area is derived. In the output, values in parentheses represent the overlap area based solely on ring atoms, while those outside parentheses include contributions from exocyclic atoms as well (see Lu and Olson, 2003; Lu et al., 2015).

Base-stacking interactions are classified into one of four categories:

  • pm (>>, forward): Interaction occurs on the plus-minus faces of the two bases in a forward direction.
  • mp (<<, backward): Interaction occurs on the minus-plus faces of the two bases in a backward direction.
  • mm (<>, outward): Interaction occurs between two minus faces oriented outward.
  • pp (><, inward): Interaction occurs between two plus faces oriented inward.

In this classification:

  • p represents the plus face of the base ring, and
  • m represents the minus face.

These categories are defined by the direction of the z-axis in the standard base reference frame (Olson et al., 2001). The symbols (>>, <<, <>, and ><) follow Parisien et al. (2009), with the exception that:

  • pm (>>) is referred to as "forward" instead of "upward," and
  • mp (<<) is referred to as "backward" instead of "downward."

The new --pair-wise option functions similarly to the --pair-only option by generating a separate output file. However, unlike --pair-only, it also includes non-pairing interactions in this file. DSSR runs faster than the full analysis because it characterizes only base-pairing and non-pairing interactions. Additionally, the --more and --json options are supported, enabling users to derive more detailed features (e.g., local base-pair parameters and H-bonds in base pairs) and easily parse them using JSON output.

Running DSSR on the yeast phenylalanine tRNA (PDB 1ehz) with the --pair-wise option identifies 34 base pairs and 91 non-pairing interactions, as expected. When combined with the --more and --json options, the output is summarized below.

# x3dna-dssr -i=1ehz.pdb --pair-wise --more --json | fx
{
  "num_pairs": 34,
  "pairs": […],
  "num_nonPairs": 91,
  "nonPairs": […],
  "program": "DSSR v2.7.2-2026jan12 by xiangjun@x3dna.org"
}

Please refer to the DSSR User Manual for comprehensive explanations of all available features.

References

  • Lu X-J, Olson WK. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31:5108–21. https://doi.org/10.1093/nar/gkg680.
  • Lu X-J, Bussemaker HJ, Olson WK. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015;:gkv716. https://doi.org/10.1093/nar/gkv716.
  • Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, et al. A standard reference frame for the description of nucleic acid base-pair geometry. Journal of Molecular Biology. 2001;313:229–37. https://doi.org/10.1006/jmbi.2001.4987.
  • Parisien M, Cruz JA, Westhof É, Major F. New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA. 2009;15:1875–85. https://doi.org/10.1261/rna.1700409.
---

Comment

 
---

·

Thank you for printing this article from http://home.x3dna.org/. Please do not forget to visit back for more 3DNA-related information. — Xiang-Jun Lu